КАТАЛОГ ПРОДУКЦИИ

Оборудование и системы вакуумной пылеуборки

Работая на рынке промышленной вентиляции уже более 25 лет, мы точно знаем, что нужно нашим клиентам: надежное и качественное оборудование, быстрая реакция на запросы, своевременная доставка и грамотная техническая поддержка. И это как раз то, что мы предлагаем.

СовПлим

СовПлим — это ведущий производитель и поставщик оборудования для промышленной вентиляции и очистки воздуха, систем аспирации, пылегазоудаления, систем вакуумной пылеуборки.

Мы предлагаем самые передовые решения для очистки воздуха внутри промышленных помещений, обеспечивая защиту здоровья работников и окружающей среды, а также повышая качество производимой продукции.

Основанный в 1989 году, СовПлим сегодня — это международная компания с головным офисом в Санкт-Петербурге (Россия). Основным рынком для СовПлим продолжает оставаться Россия, где компания занимает около 60% рынка промышленной вентиляции.

Услуги

Мы предлагаем полный спектр услуг по разработке, конструированию, поставке, установке и пуско-наладке оборудования, а также по, гарантийному и послепродажному обслуживанию.

Почему работают с нами:

- широкий спектр энергосберегающих решений;
- повышение эффективности производственных процессов;
- обеспечение требований промышленной безопасности;
- защита здоровья сотрудников;
- соответствиям требованиям защиты окружающей среды.

Наш главный аргумент

Уже более 30 000 компаний выбрали СовПлим как надежного и профессионального партнера. Отзывы наших довольных клиентов - это лучшие аргументы в пользу сотрудничества с нами.

В данном проспекте АО «СовПлим» представляет вашему вниманию системы вакуумной пылеуборки собственного производства для различных областей применения.

Системы вакуумной пылеуборки

Стационарные системы вакуумной пылеуборки являются самым прогрессивным способом очистки производственных помещений и обладают рядом преимуществ:

- Сбор материала вакуумной системой исключает вторичное пыление в процессе уборки.
- Оператор уборки не занимается транспортировкой собранного материала к месту хранения или возвращения в технологический процесс.
- Вакуумная система обеспечивает максимально возможный темп уборки производственного помещения, недостижимый при применении альтернативных способов, включая гидросмыв.
- Оборудование для вакуумной уборки является очень простым и соответственно надежным.
- Для технического обслуживания (1-2 раза в год) не требуются специалисты высокой квалификации.

Стационарные системы вакуумной пылеуборки для промышленных предприятий обладают производительностью в диапазоне от 100 кг/час до 10 т/час.

С задачами по уборке менее 100 кг/час успешно справляется персонал, не требующий специальной квалификации, применяя передвижные пылесосы и поломоечные машины с небольшим мешком или контейнером для сбора пыли.

Когда требуемая производительность уборки по материалу превышает 100 кг/час, становится актуальным вопрос не столько сбора пыли с пола, сколько транспортировка собранной пыли к месту утилизации или возвращения в технологический процесс.

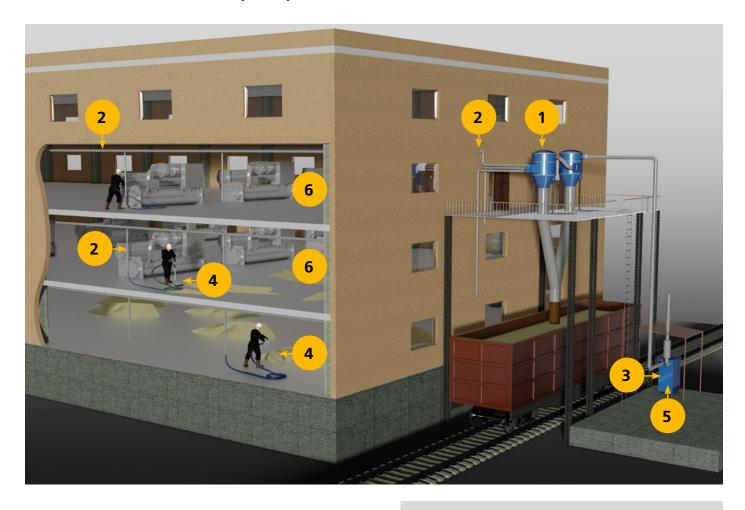
Потребность промышленных предприятий в системах производительностью более 10 т/ч, как правило, говорит о существенных несовершенствах технологического процесса или отсутствии систем аспирации у источников пылеобразования.

Материал: металлическая окалина, абразив. г. Сургут расчетная температура воздуха в зимний период-47 °C.

Материал: каменный уголь. г. Н. Тагил. Взрывозащищенное исполнение.

Материал: металлургическая шихта. г. Актобе Республика Казахстан.

Область применения

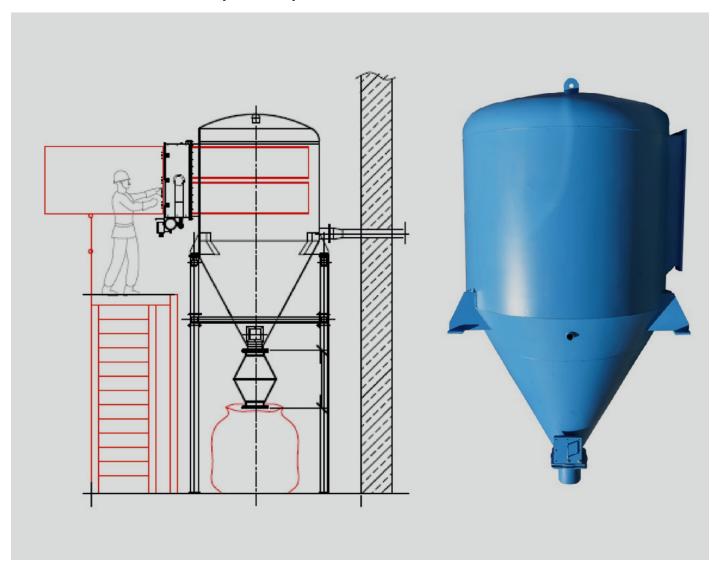

- Металлургия (черная, цветная)
- Производство цемента
- Производство строительных материалов
- Производство минеральных удобрений
- Горнодобывающая промышленность
- Химическая промышленность
- Пищевая промышленность
- Фармацевтическая промышленность
- Машиностроение

Предлагаемые нами фильтровальные установки способны улавливать пыли и аэрозоли следующих веществ:

- Окислы металлов
- Цемент, стекло, уголь
- Сухие строительные смеси
- Минеральные удобрения
- Шерсть, песок
- Красящие пигменты
- Мука, чай, табак
- Абразив, текстиль
- Различные виды солей
- Фармацевтические компоненты
- Моющие порошки и т. д.

Стационарная система вакуумной пылеуборки

Пример компоновки

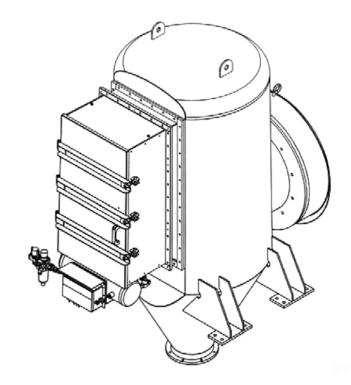

Основные компоненты системы:

- 1 Фильтр-сепаратор.
- 2 Система вакуумных трубопроводов с пневморозетками для подключения уборочных шлангов.
- Вакуумный насос Рутса.
- Комплект аксессуаров и шлангов для уборки.
- **(5)** Шкаф управления стационарной вакуумной системой.
- 6 Местные пульты управления для включения / выключения системы, размещаемые на каждой отметке.

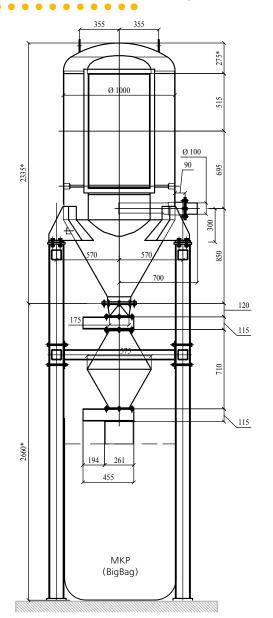
Описание

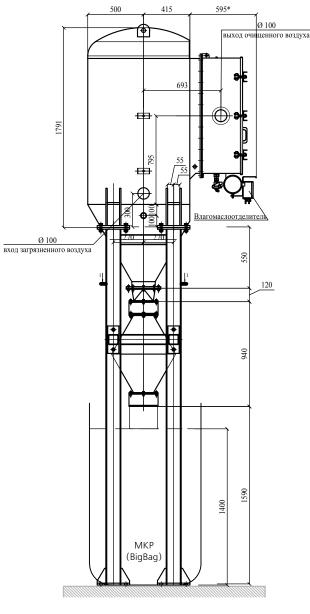
Стационарная вакуумная система представляет собой центральную систему для уборки целого производственного здания. Разветвленная сеть вакуумных трубопроводов с размещенными на каждой отметке (этаже) постами подключения уборочных (пневморозетками). шлангов Прокладка сети трубопроводов и установка пневморозеток выполняется таким образом, чтобы зоны действия шланга уборочного аксессуара подключаемого K каждой пневморозетке, перекрывали всю площадь, подлежащую уборке. Все ветви вакуумных трубопроводов сводятся к фильтру – сепаратору, в котором происходит осаждение и выгрузка собранного материала. В качестве побудителя тяги в системах пылеуборки служит вакуумный насос Рутса, обеспечивающий необходимое разрежение и расход воздуха для транспортирования материала.

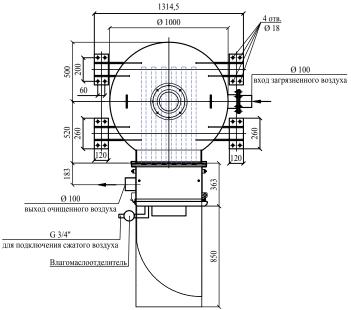
Фильтр-сепаратор



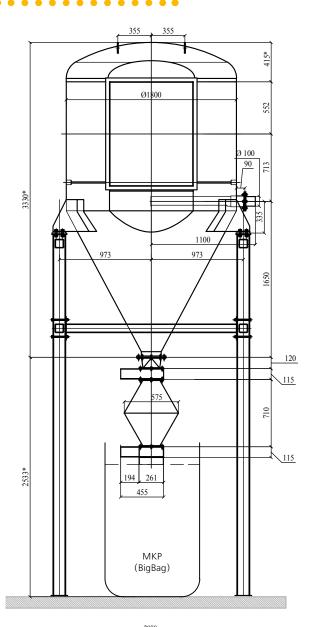
Фильтр-сепаратор устанавливается на опорную конструкцию в местах, определенных проектом. Фильтр-сепаратор представляет собой карманный фильтр с гладкими фильтрующими элементами.

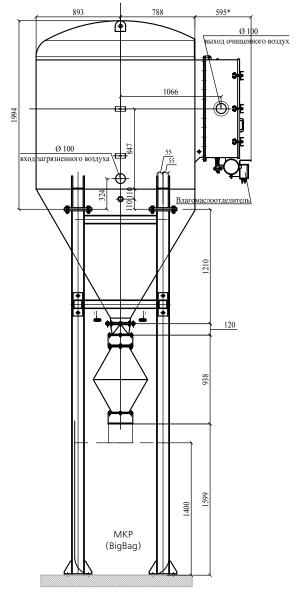

Регенерация фильтрующих элементов осуществляется в процессе работы последовательно в автоматическом режиме (а так же после остановки системы) импульсной продувкой сжатым воздухом с давлением от 4 до 7 бар. Включение режима регенерации производится в зависимости от значения перепада давления между грязной и чистой камерами фильтра. Длительность и количество циклов очистки задается на панели управления.


Степень очистки пылеулавливающего устройства составляет 99,95%. Разгрузка собранного и уловленного в фильтрующем модуле материала производится непрерывно с помощью шлюзового питателя или двойной ножевой заслонки.


Шлюзовый питатель и двойная ножевая заслонка обеспечивают порционную разгрузку собранной пыли, без подсоса воздуха и остановки системы.

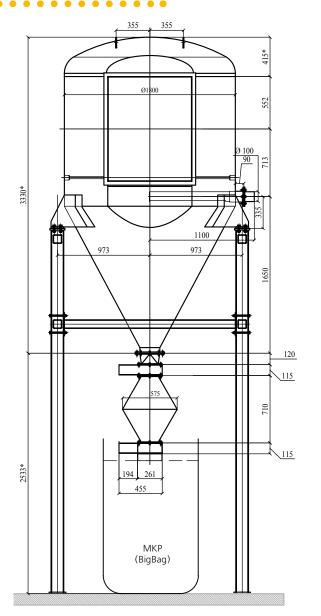
Общий технический чертеж карманного фильтра SFV-104

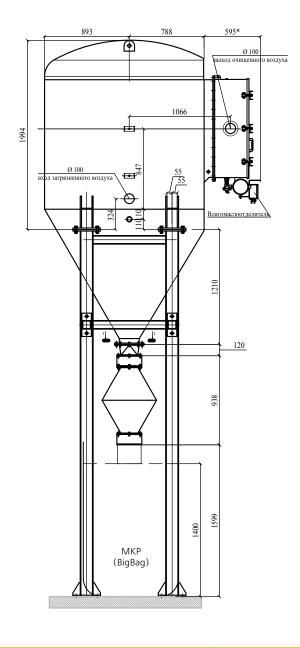


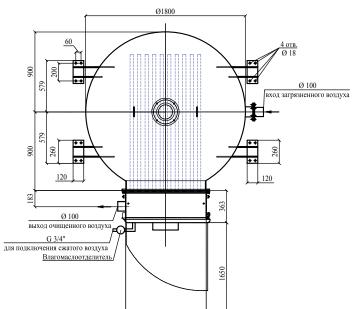


Характеристики фильтра SFV-104				
Производительность	до 1200 м³/час			
Усиление фильтра	на -0,5 бар			
Блок управления	1 шт.			
Ящик со встроенными магнитными клапанами	1 шт.			
Остаточная концентрация пыли	менее 10 мг/м³			
Температура эксплуатации (стандартно)	от -20 °C до +80 °C			
Температура эксплуатации (опция)	от -40 °C до +80 °C			
Температура входного потока	до +150 °C			
Фильтровальные элементы	10 рукавов			
Материал фильтровальных элементов	нетканный полиэстер			
Площадь фильтрующей поверхности	10 M ²			
Напряжение питающей сети	230 Вт, 50 Гц			
Двойная ножевая заслонка/шлюзовой питатель ZS 200	1 шт.			
Влагомаслоотделитель	1 шт.			
Расход сжатого воздуха	7 м³/ч			
Выгрузка карманов	в бок			
Максимальный рабочий вес	1300 кг			

Общий технический чертеж карманного фильтра SFV-204

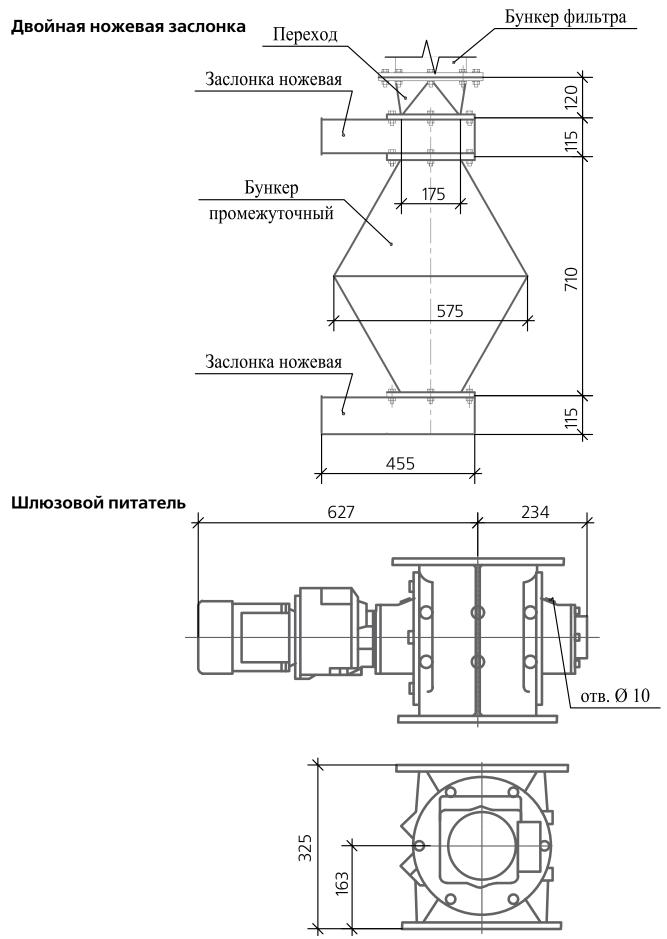





2080
Ø1800
1
4 OTB.
60
() ()
вход загрязненного воздуха
_ [S]
120
<u>₹</u>
0100
выход очищенного воздуха
G 3/4"
ля подключения сжатого воздуха
Влагомаслоотделитель

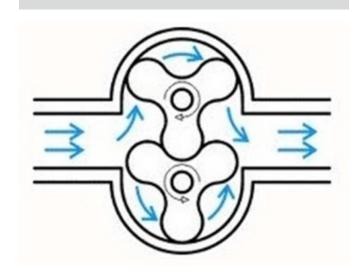
Характеристики фильтра SFV-204				
Производительность	до 2000 м³/час			
Усиление фильтра	на -0,5 бар			
Блок управления	1 шт.			
Ящик со встроенными магнитными клапанами	1 шт.			
Остаточная концентрация пыли	менее 10 мг/м³			
Температура эксплуатации (стандартно)	от -20 °C до +80 °C			
Температура эксплуатации (опция)	от -40 °C до +80 °C			
Температура входного потока	до +150 °C			
Фильтровальные элементы	20 рукавов			
Материал фильтровальных элементов	нетканный полиэстер			
Площадь фильтрующей поверхности	20 M ²			
Напряжение питающей сети	230 Вт, 50 Гц			
Двойная ножевая заслонка/шлюзовой питатель ZS 200	1 шт.			
Влагомаслоотделитель	1 шт.			
Расход сжатого воздуха	7 м³/ч			
Выгрузка карманов	в бок			
Максимальный рабочий вес	1500 кг			

Общий технический чертеж карманного фильтра SFV-304



Характеристики фильтра SFV-304				
Производительность	до 3000 м³/час			
Усиление фильтра	на -0,5 бар			
Блок управления	1 шт.			
Ящик со встроенными магнитными клапанами	1 шт.			
Остаточная концентрация пыли	менее 10 мг/м³			
Температура эксплуатации (стандартно)	от -20 °C до +80 °C			
Температура эксплуатации (опция)	от -40 °C до +80 °C			
Температура входного потока	до +150 °C			
Фильтровальные элементы	20 рукавов			
Материал фильтровальных элементов	нетканный полиэстер			
Площадь фильтрующей поверхности	30 m²			
Напряжение питающей сети	230 Вт, 50 Гц			
Двойная ножевая заслонка/шлюзовой питатель ZS 200	1 шт.			
Влагомаслоотделитель	1 шт.			
Расход сжатого воздуха	7 м³/ч			
Выгрузка карманов	в бок			
Максимальный рабочий вес	1600 кг			

УСТРОЙСТВА РАЗГРУЗКИ Общий технический чертеж


Вакуумный компрессор РУТСА

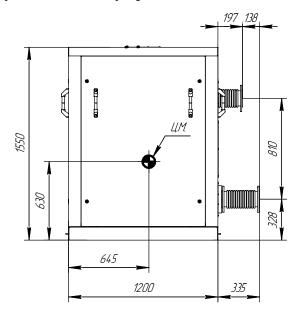
Побудителем тяги воздушного потока в системах вакуумной пылеуборки является вакуумный компрессор Рутса.

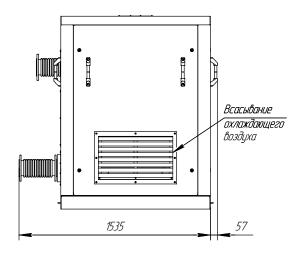
Создаваемое им высокое разрежение позволяет обеспечить требуемый расход воздуха в гибких шлангах и трубопроводах.

Принцип действия нагнетателя типа Рутса заключается в том, что два идентичных ротора, снабженных лопастями, синхронно вращаются в нагнетательной полости, выполняя роль вращающихся поршней.

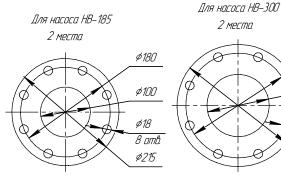
При вращении они захватывают входящий поток газа из всасывающего патрубка, постепенно изолируют его в полостях между лопастями и корпусом, сжимают и перемещают его к нагнетательному патрубку, а затем выталкивают его через выходное отверстие.







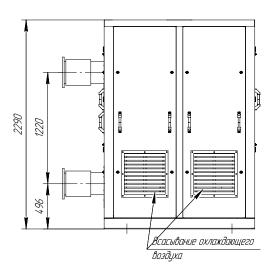
Общий технический чертеж Bakyyмного насоса VPR-185, VPR-300 в шумоизолированном корпусе

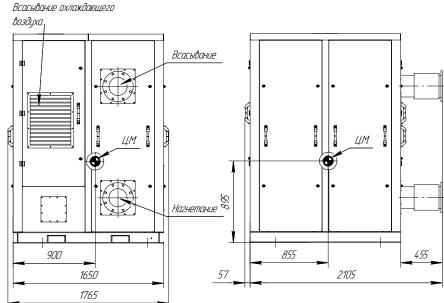


Ø210

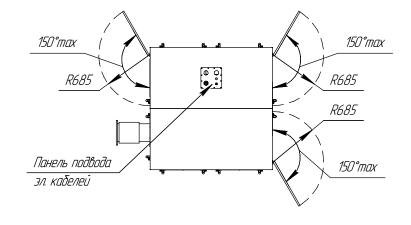
ø125

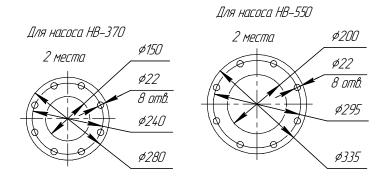
Ø18 8 omb.

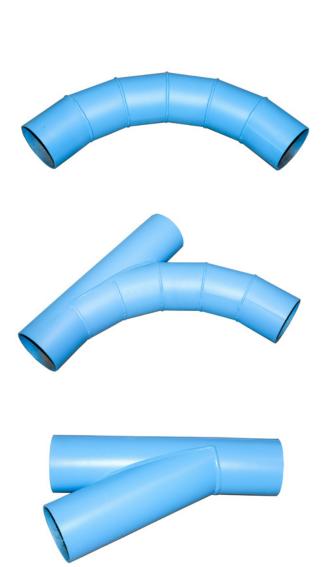

ø245



Характеристики	VPR-185	VPR-300
Производительность	875 м³/час	1300 м³/час
Разрежение	-50 кПа	-50 кПа
Приводная мощность	18,5 кВт	30,0 кВт
Диаметр фланца на всасывании	100 мм	125 мм
Macca	730 кг	800 кг


Общий технический чертеж BAKYYMHOГО HACOCA VPR-370, VPR-550 в шумоизолированном корпусе





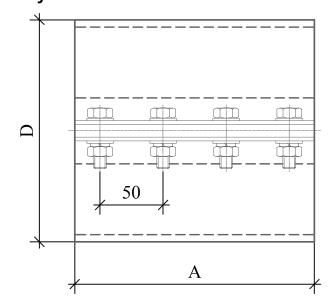
VPR-370	VPR-550
1960 м³/час	2930 м³/час
-50 кПа	-50 кПа
37,0 кВт	55,0 кВт
150 мм	200 мм
1650 кг	1800 кг
	1960 м³/час -50 кПа 37,0 кВт 150 мм

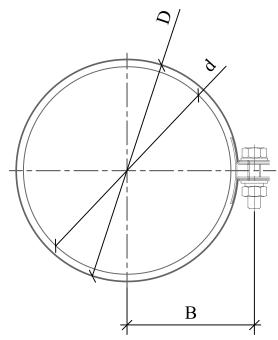
Вакуумные трубопроводы

Сеть вакуумных трубопроводов прокладывается по существующим конструкциям производственного помещения. Фасонные элементы (отводы и тройники) применяются с радиусом поворота, равным трем диаметрам трубопровода. Вакуумный трубопровод монтируется с учетом конструктивных особенностей помещений. Его быстроразъемная конструкция позволяет в короткое время демонтировать отдельные элементы для проведения работ, либо для устранения аварийных засоров. Посты подключения располагаются таким образом, что бы обеспечить максимальное удобство присоединения шлангов для уборки.

Трубопроводы и фасонные изделия

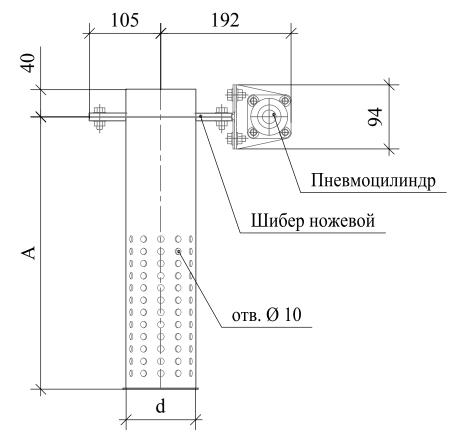
Изготавливаются из стали или нержавеющей стали


Наименование	Эскиз		Размер			Толщина	Вес, кг
		d	А	В	С	стенки мм	
		76	2800			2	10,3
T. C		102	2800			2	13,8
Трубопровод	A	133	2800			3	26,8
		159	2800			4	42,8
	* 5	76	250	250		2	1,68
Отвод О1	m a	102	350	350		2	2,96
a = 90°		133	460	460		3	7,66
	A	159	550	550		4	14,6
	A	76	144	250		2	1,26
Отвод ОЗ		102	194	335		2	2,2
a = 60°	å "	133	250	440		3	5,7
	d	159	300	520		4	10,9
	∤ ^A ∤	76	80	190		2	0,84
Отвод О4		102	120	255		2	1,48
a = 45°	a = 45°	133	140	330		3	3,83
		159	150	400		4	7,30
	 A	76	260	260	270	2	1,8
Тройник T1		102	350	350	360	2	3,2
ТРОИПИКТ	O M	133	460	460	480	3	7,9
	d	159	550	550	625	4	15,2
	B	76	230	230		2	1,7
T		102	300	300		2	2,9
Тройник Т2	р	133	400	400		3	7,7
	100 A	159	550	550		4	16,8
	AAA	76	260	260		2	3,0
TweyT2	1	102	350	350		2	5,5
Тройник ТЗ	m	133	460	460		3	14,0
	d	159	550	550		4	27,5

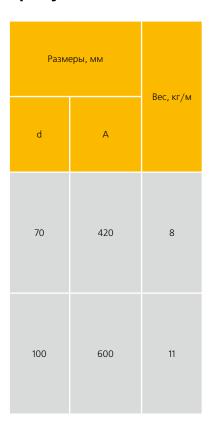

Элементы системы

Соединение монтажными хомутами

Хомут монтажный



Характеристики хомута


Размеры, мм				Dos. 45/4
d	D	А	В	Вес, кг/м
50	60	70	45	0,4
70	80	100	55	0,5
100	110	140	68	0,75
159	176	190	101	1,4

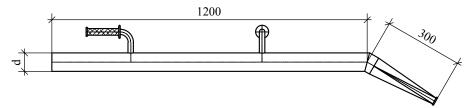
Элементы системы

Продувочный клапан

Характеристики продувочного клапана

ШКАФ УПРАВЛЕНИЯ СТАЦИОНАРНОЙ ВАКУУМНОЙ СИСТЕМОЙ И МЕСТНЫЕ ПУЛЬТЫ УПРАВЛЕНИЯ.

Управление вакуумной системой осуществляется шкафом управления, включающим логический контроллер, пусковую и коммутационную аппаратуру. В случае работы системы в нескольких режимах для поддержания стабильного разрежения необходимо изменять частоту вращения двигателя вакуумного насоса, тогда шкаф управления комплектуется частотным преобразователем.

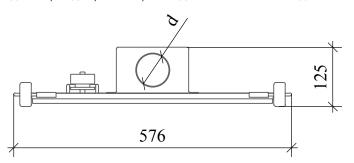


Технические характеристики и параметры продукции, указанной в данном каталоге, могут быть изменены без предварительного уведомления.

Аксессуары для уборки

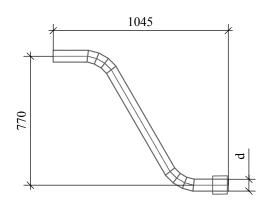
Насадка щелевая для уборки больших количеств материала (аварийные просыпи, кучи...)

Предназначена для уборки материала «из кучи». Производится разных диаметров для разной производительности от 50 мм до 125 мм.



Насадка напольная для уборки тонких и толстых слоев пыли с пола и оборудования

Предназначена для уборки пыли с пола и оборудования.


Производится разных диаметров для разной производительности от 32 мм до 85 мм.

Держатель для напольной насадки

Насадка для очистки одежды и небольших поверхностей

Наименование	Диаметр d, мм	Материал
	70	алюминий
Насадка щелевая для уборки больших	70	нержавеющая сталь
количеств материала	100	алюминий
	100	нержавеющая сталь
	50	алюминий
Насадка напольная для уборки тонких	50	нержавеющая сталь
и толстых слоев пыли с пола и оборудования	70	алюминий
и осорудования		нержавеющая сталь
Насадка для очистки одежды и небольших поверхностей	40	
	F0	алюминий
Держатель для напольной насадки	50	нержавеющая сталь
	70	алюминий
	70	нержавеющая сталь

Быстроразъемные соединения

Пневморозетка

Подключение шланга к пневморозетке

Шланги полиуретановые абразивостойкие Master-PUR H, Master-PUR L

Характеристики шлангов

Наименование	Внутренний диаметр, мм	Избыточное давление, бар	Вакуум, мм вод. ст.	Радиус изгиба, мм	Наружный диаметр, мм	Вес, кг/м	Артикул	Стандартная длина, м
Master-PUR L	51	1,68	5250	58	58	0,45	111-051-401	10 / 15
Master-PUR H	51	2,9	8000	87	61	0,71	111-051-401	10 / 15
Master-PUR L	70	1,12	3750	78	78	0,68	111-070-401	10 / 15
Master-PUR H	70	2,25	6750	117	80	0,97	111-070-401	10 / 15
Master-PUR L	102	0,84	2250	110	110	0,95	111-102-401	10 / 15
Master-PUR H	102	1,5	4500	165	112	1,48	111-100-401	10 / 15

Муфта полиуретановая резьбовая

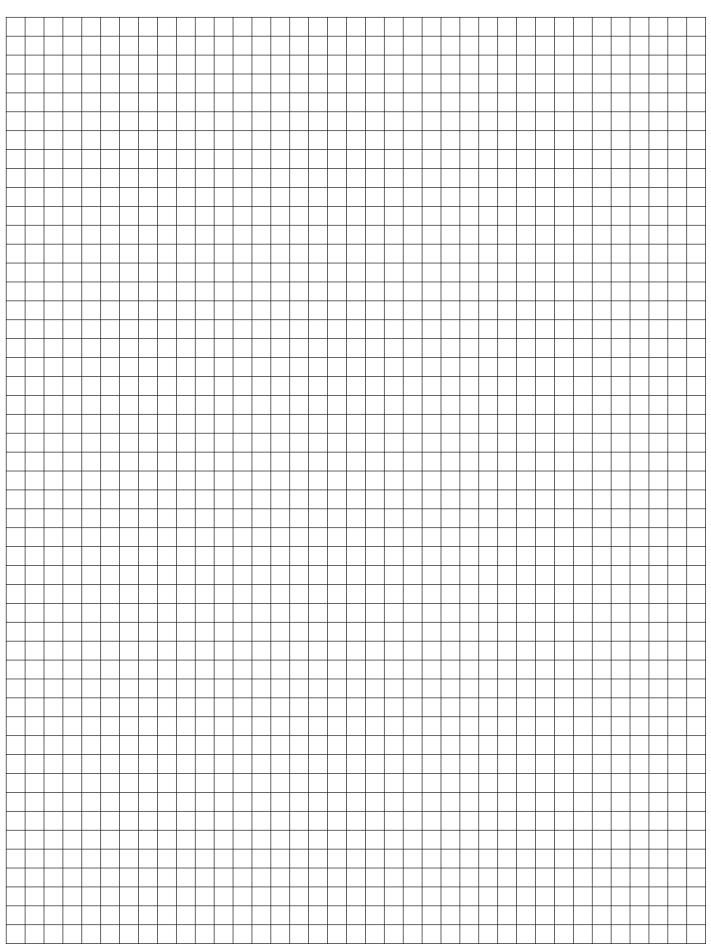
Характеристики муфты

Внутренний диаметр, мм	Размер соединения dA, мм	D, мм	Длина, мм	Вес, кг/шт.	Артикул тип L	Артикул тип Н
50	51,2	59	90	0,11/0,1	540-050-107	541-050-107
70,5	70	79	100	0,19/0,17	L/H	
102,1	100	112	120	0,36/0,30	L/H	

Опросный лист

Для разработки центральной системы пылеуборки

Название организации	
Почтовый адрес	
Контактное лицо (ФИО, должность, подп	ись)
Телефон, e-mail	
Дата составления	
Наименование объекта подлежащего уборке	
Выбор общеі	го описания задачи.
	 1. Пыль, осевшая из воздуха, лежит тонким слоем на полу, строительных конструкциях. Аксессуар – щетка с колесными опорами. • Толщина слоя, образующегося между уборками:
	 Полщина слоя, образующегося между уборками. До 0,25 мм min До 0,5 мм До 1,0 мм До 2,0 мм До 4,0 мм До 8,0 мм тах Общая площадь подлежащая уборкем². Количество операторов, одновременно занятых на уборке
	помещениячел. • Требуемая продолжительность уборкич.
	2. Пыль или просыпь кускового материала и лежит в кучах у источника выделения. Аксессуар – щелевая насадка.
	 Требуемая производительность по материалу каждого оператора: □ до 0,1 м³/ч □ до 0,8 м³/ч □ до 1,6 м³/ч □ до 3,2 м³/ч Количество операторов, одновременно занятых на уборке
	материалачел. • Требуемая продолжительность уборкич.
	3. Собираемый материал забирается из под кожуха источника
	выделения (сварочная горелка с отсосом /
	пост абразивной зачистки).
	 Расход воздуха, определенный производителем местного отсоса (присоединительный диаметр): □ 100-150 м³/ч (Ø 32 мм) □ 200-250 м³/ч (Ø 38 мм) □ 300-350 м³/ч (Ø 50 мм) □ 500-600 м³/ч (Ø 70 мм) Количество одновременно подключаемых к системе
	точек отбора / операторовчел.


Описание окружающей среды.

Температура и влажность воздуха окружающей среды в местах уборки °С, %. Категория помещения по взрывопожарной опасности.		
Окружающий воздух:	□ сухой□ маслянистый	□ влажный□ пыльный
Температура и влажность воздуха в месте размещения оборудования °С, %. Категория помещения по взрывопожарной опасности.		
Требуемая степень защиты электрооборудования	IP/EEx	
Описание и свойства собираемого материала.		
Наименование материала:		
Насыпная плотность:	☐ легкий p<1.0 т/м³ ☐ тяжелый 2.0 <p<5.0 td="" м³<="" т=""><td>□ средний 1.0<<2.0 т/м³ □ очень тяжелый>5.0 т/м³</td></p<5.0>	□ средний 1.0<<2.0 т/м³ □ очень тяжелый>5.0 т/м³
Фракционный состав:	☐ мелкий <1.0мм ☐ крупный 10 -30 мм	□ средний 1-10 мм □ очень крупный 30-50 мм
Характеристика собираемого материала:	☐ сухой ☐ жидкий ☐ липкий	□ влажный □ абразивный □ маслянистый □ кислотный □ токсичный □ жирный □ электропроводный □ диэлектрик
Текучесть материала:	хорошая	Плохаяугол текучести
Температура материала:	холодный <0°C обычный 0-50°C	□ горячий 50-100°C□ очень горячий > 100°C
Взрывоопасность:	взрывоопасный	не взрывоопасный
Требуемое исполнение оборудования:	 кислотостойкое антистатическое	□ общепромышленное□ взрывозащищённое
Утилизация собранной пыли и отработавшего воздуха.		
Способ накопления собранного материала для утилизации:	☐ BigBag ☐ бункер-накопитель, для	
Возврат в технологический процесс:	 непрерывно, в существую через бункер-накопителы пневмотранспортом в от,	ь на конвейерную ленту
Выброс очищенного воздуха:	🔲 в помещение цеха 🔲 в	з атмосферу Требуемая остаточная концентрация мг/м³

газі рапичения поставки.	
Энергоносители, предоставляемые Заказчиком:	 □ Осушенный сжатый воздух, точка росы не выше -20 °C □ Электросеть 380В. Ограничение по мощностикВт □ Компрессорное оборудование включить в объем поставки
В объем поставки должны быть включены:	 Вакуумный насос, фильтр − сепаратор. Шкаф управления системой. Сеть трубопроводов, включая фасонные элементы и соединительные хомуты. Уборочные аксессуары и шланги. Комплект документации (паспорта, инструкции по монтажу и эксплуатации). Рабочая документация на систему в разделах ТХ, КМ, ЭМ. Шефмонтаж системы. Наладочные работы. Обучение персонала.
помещения, подлежащего мест образования просыпи Указать на чертежах предг	одимо приложить строительные планы и разрезь уборке с нанесением контуров убираемой площадки или рабочих постов, оборудуемых местным отсосом полагаемое место размещения вакуумного оборудо- ранной пыли в технологический процесс.

Для заметок

АО «СовПлим»

195279, г. Санкт-Петербург, шоссе Революции, д. 102, корп. 2 тел/факс: : +7 (812) 33-500-33 e-mail: info@sovplym.spb.ru www.sovplym.ru

Московский филиал

111020, г. Москва ул. Крюковская, д. 23 тел./факс: +7 (495) 121-06-56 e-mail: msk@sovplym.com

Екатеринбургский филиал

620078, г. Екатеринбург ул. Коминтерна, д.16, оф. 311 тел/факс: +7 (343) 356-52-33 e-mail: ekb@sovplym.com

Сургутский филиал

628400, Тюменская обл., г. Сургут ул. 50 лет ВЛКСМ, д. 4/2 тел/факс: +7 (3462) 55-58-35 e-mail: sgt@sovplym.com

Нижегородский филиал

603034, г. Н. Новгород ул. Шлиссельбургская, д. 23 «В», офис 41 тел./факс: +7 (831) 216-44-40 e-mail: nnv@sovplym.com

Самарский филиал

443125, г. Самара ул. Губанова, д. 3, оф. 502 тел./факс: +7 (846) 205-99-63 e-mail: sam@sovplym.com

Казанский филиал

421001, Россия, Казань, ул. Сибгата Хакима, д. 31, а/я 113 тел.: +7 (843) 520-70-70, 202-07-30 kazan@sovplym.spb.ru

Ростовский филиал

344064, г. Ростов-на-Дону ул. Вавилова, д. 62-В, оф. 315 тел/факс: +7 (863) 282-92-92 e-mail: rnd@sovplym.com

000 «СовПлим-Сибирь»

630009, г. Новосибирск ул. Никитина, д. 20 тел./факс: +7 (383) 335-85-86 e-mail: sovplym@sovplym.ru

ТОО «СовПлим-Казахстан»

100017, г. Караганда пр. Н. Абдирова, д. 3, оф. R-316 тел./факс: +7 (7212) 42-57-74 e-mail: kz@sovplym.ru

СП 000 «СовПлим»

100047, Ташкент, Мирзо-Улугбекский район, O'ZBEKISTON OVOZI KO'CHASI, 2-UY тел./факс: +998 -71-113-00-11 e-mail: info.uzb@sovplym.com